Mapping of micro-meteorological conditions using statistical approaches – The example of Stuttgart

Christine Ketterer ^{1,2} & Andreas Matzarakis¹

¹ Albert-Ludwigs-University of Freiburg, Germany, ² iMA, Richter & Röckle

Introduction

- maps are fundamental for decision-making for city planers and architects
- quantification of recent and future conditions
- quantification of adaptation measures facing climate change

Intra-urban temperature differences Urban-rural temperature differences (UHI)

Adaptation measures

Human-biometeorological methods Thermal indices (Physiologically Equivalent Temperature (PET))

LCZ: Local Climate Zone (Stewart & Oke 2012), SVF: Sky View Factor

ENVI-met (Bruse & Fleer 1998), RayMan (Matzarakis et al. 2007, 2010)

Study area: Stuttgart

① Intra-urban temperature differences

Ourban-rural temperature differences

③ Maps (PET, Ta, UHI)

(4) Adaptation measures

1 Intra-urban PET-differences

Echterdingen, Hohenheim, Schnarrenberg, Neckartal, Schwabenzentrum

Data: 2000 - 2010, hourly values

② Urban-rural PET-differences

- strong heat stress (PET > 35 °C) only in daytime
- 12 115 h weak heat stress between 22:00-6:00 CET

frequency (in %)/	Stuttgart - city center (Schwabenzentrum)								
$\Delta_{ extsf{u-r}}$ PET (K)	winter	spring	summer	autumn					
< -2.0	0.1	0.1	0.1	0.1					
-2.0 - 0.0	7.0	4.1	3.6	6.1					
0.1 - 2.0	63.5	54.4	45.5	57.2					
2.1 - 4.0	25.6	30.6	35.7	28.3					
> 4.0	3.9	10.7	15.2	8.3					

③ Mapping PET

③ Land use and land cover, SVF, topography

Data: 3 July 2014 13:00 CET; method: artificial neural network

(4) Quantification of adaptation measures

ENVI-met 3.5 simulations, average value 10:00-17:00

(4) Quantification of adaptation measures

Height-/		Orientation											
width	Frequency	N-S	NW-SE				W-E			SW-NE			
ratio	(in %)	0° ′	15° 30'	° 45°	60°	75°	90°	105°	120°	135°	150°	165°	
	heat stress	26,5 2	6,6 26,8	27,0	27,1	27,2	27,2	27,1	26,9	26,7	26,5	26,4	
0,5	th. comfort	50,2 5	0,1 <mark>49,8</mark>	49,6	49,0	48,5	48,5	49,0	49,3	49,9	50,1	50,2	
	cold stress	23,4 2	3,4 23,4	23,4	23,9	24,3	24,3	24,0	23,7	23,4	23,4	23,3	
	heat stress	24,3 2	4,4 24,5	24,7	24,8	24,9	25,0	24,8	24,6	24,4	24,3	24,2	
1	th. comfort	54,1 5	4,1 54,2	54,3	54,3	54,1	53,6	53,6	54,0	54,2	54,2	54,4	
	cold stress	21,6 2	1,5 21,3	3 20,9	20,9	20,9	21,4	21,6	21,4	21,4	21,5	21,4	
	heat stress	23,4 2	3,4 <mark>23,6</mark>	23,7	23,9	23,9	23,9	23,8	23,8	23,6	23,6	23,4	
1,5	th. comfort	56,1 5	5,9 56,2	56,1	56,0	56,3	56,2	55,7	55,6	55,8	56,1	55,8	
	cold stress	20,5 2	0,6 20,2	20,2	20,1	19,8	19,9	20,5	20,6	20,5	20,3	20,8	
	heat stress	22,9 2	3,0 <mark>23,1</mark>	23,2	23,3	23,4	23,3	23,2	23,2	23,2	23,1	23,0	
2	th. comfort	56,8 5	7,0 56,9	56,9	57,0	57,1	57,1	56,8	56,6	56,5	56,7	56,8	
	cold stress	20,3 1	9,9 20,0	19,9	19,7	19,6	19,6	20,0	20,1	20,3	20,3	20,3	
	heat stress	22,7 2	2,7 <mark>22,8</mark>	22,9	23,0	23,1	23,1	22,9	23,0	22,9	22,8	22,7	
2,5	th. comfort	57,2 5	7,7 57,4	57,5	57,5	57,4	57,7	57,3	57,2	57,3	57,4	57,7	
	cold stress	20,1 1	9,5 19,8	8 19,6	19,5	19,5	19,3	19,8	19,8	19,8	19,8	19,6	
	heat stress	22,5 2	2,4 22,5	22,6	22,7	22,8	22,8	22,6	22,7	22,6	22,5	22,4	
3	th. comfort	57,9 5	8,1 57,8	58,0	58,0	57,8	58,0	57,9	58,0	57,7	57,7	58,1	
	cold stress	19,6 19	9,4 19,7	19,4	19,3	19,4	19,2	19,5	19,4	19,7	19,7	19,5	
	heat stress	22,3 2	2,3 <mark>22,4</mark>	22,5	22,6	22,6	22,7	22,5	22,5	22,4	22,4	22,2	
3,5	th. comfort	58,3 5	8,3 58,1	58,2	58,2	58,0	58,1	58,1	58,2	58,1	58,0	58,3	
	cold stress	19,4 1	9,4 19,5	19,4	19,2	19,3	19,2	19,4	19,3	19,5	19,6	19,4	

cold stress PET < 13 °C, th. comfort: 13 °C < PET < 28 °C, heat stress: PET > 28 °C

RayMan simulation, data: Schwabenzentrum 2000 - 2010, hourly values

(4) Quantification of adaptation measures

Height-/	ght-/ Orientation												
width	Frequency	N-S	3 N		NW-SE			W-E			SW-NE		
ratio	(in %)	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
	heat stress					26,9	± (),3					
0,5	th. comfort					49,7	± (),6					
	cold stress					23,4	± (),3					
	heat stress												
1	th. comfort												
	cold stress												
	heat stress					23,6	± (),2					
1,5	th. comfort					56,1	± (),2					
	cold stress					20,4	± (),3					
	heat stress												
2	th. comfort												
	cold stress												
	heat stress												
2,5	th. comfort												
	cold stress												
	heat stress												
3	th. comfort												
	cold stress												
	heat stress					22,5	± (),1					
3,5	th. comfort					58,2	± (),1					
	cold stress					19,4	± (),1					

cold stress PET < 13 °C, th. comfort: 13 °C < PET < 28 °C, heat stress: PET > 28 °C

RayMan simulation, data: Schwabenzentrum 2000 – 2010, hourly values

• heat stress occurs mainly in daytime

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks
- quantification of adaptation measures

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks
- quantification of adaptation measures
 - thermal indices

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks
- quantification of adaptation measures
 - thermal indices
 - consideration of all seasons

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks
- quantification of adaptation measures
 - thermal indices
 - consideration of all seasons
 - reduction of heat stress in daytime

- heat stress occurs mainly in daytime
- \bullet topography and land use types \rightarrow micro-climate
- artificial neural networks
- quantification of adaptation measures
 - thermal indices
 - consideration of all seasons
 - reduction of heat stress in daytime
 - nocturnal air temperature is defined by the background conditions

Thank you very much for your attention!

PET - 21:00 CET

Urban heat island (Ta)

measurements: 3 July 21:00 MEZ; methode: SMLR

PET 21:00

measurements: 3 July 2014 21:00 CET; methode: SMLR

Quantification of adaptation measures

	sealed	un-sealed	build./	av. building-	trees	scrubs	grass
	(%)	(%)	area (%)	height (m)			
hospital	0,4	0,3	0,3	24,7	55	51	1087
hospital (pond)	0,4	0,3	0,2	25,2	55	51	1087
hospital	0,4	0,3	0,3	24,7	55	51	1087
(green roofs)							
hospital	0,4	0,3	0,3	24,7	656	39	848
(trees)							
residential area	0,3	0,2	0,2	15,4	86	20	1067
Square (asphalt)	0,8	0,1	0,1	16,3	38	20	311
Park (grass)	0,3	0,6	0,1	16,3	175	234	3667
Park (trees)	0,3	0,6	0,1	16,3	961	200	2946
Park	0,3	0,6	0,1	16,3	175	234	3667

Introduction - Human–Biometeorology

PET: Physiological Equivalent Temperature (Mayer & Höppe 1987, Höppe 1999, Matzarakis et al. 1999) 31

③ Calculation of roughness

