Cross-analysis between variability of the urban climate and the landscape heterogeneity at the scale of a neighborhood

<u>Julien Le Bras</u>, Noémie Gaudio, Aude Lemonsu, Dominique Legain, Lina Quinteiro, Valéry Masson

Météo France / CNRS - Toulouse, France

9th International Conference on Urban Climate

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

5 Conclusion

1 Introduction

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

5 Conclusion

Temperature variability measured with a bicycle in Blagnac the 3rd June 2009 in the morning

∆T=3°C

Source : projet PIRVE

Air temperature variability may have the same magnitude than the UHI $% \mathcal{A}_{\mathrm{e}}$

Objectives

Cross-analysis of the temperature measured at the neighborhood scale with urban landscape heterogeneities

Objectives

Cross-analysis of the temperature measured at the neighborhood scale with urban landscape heterogeneities

Step 1 : Experimental quantification of the spatial variability of urban microclimate at neighborhood scale

Objectives

Cross-analysis of the temperature measured at the neighborhood scale with urban landscape heterogeneities

- Step 1 : Experimental quantification of the spatial variability of urban microclimate at neighborhood scale
- Step 2 : Definition of urban landscape heterogeneities based on relevant indicators

Objectives

Cross-analysis of the temperature measured at the neighborhood scale with urban landscape heterogeneities

- Step 1 : Experimental quantification of the spatial variability of urban microclimate at neighborhood scale
- Step 2 : Definition of urban landscape heterogeneities based on relevant indicators
- **Step 3** : Cross-analysis of temperatures and urban indicators

Objectives

Cross-analysis of the temperature measured at the neighborhood scale with urban landscape heterogeneities

- Step 1 : Experimental quantification of the spatial variability of urban microclimate at neighborhood scale
- Step 2 : Definition of urban landscape heterogeneities based on relevant indicators
- **Step 3** : Cross-analysis of temperatures and urban indicators

EUREQUA project (2012-2016) : Interdisciplinary project dealing with environmental quality of the districts

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion $\ensuremath{\textsf{Plan}}$

1 Introduction

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

5 Conclusion

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion $\ensuremath{\textit{Study}}$ areas

 Field campaign in Marseille (june 2013), Paris (october 2013), Toulouse (january to june 2014)

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion $\ensuremath{Study\xi}$ areas

- Field campaign in Marseille (june 2013), Paris (october 2013), Toulouse (january to june 2014)
- Study area : 500m by 500m

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion $\ensuremath{\mathsf{Study}}\xspace$ areas

- Field campaign in Marseille (june 2013), Paris (october 2013), Toulouse (january to june 2014)
- Study area : 500m by 500m
- Strong heterogeneity of the urban landscape

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Instrumentation : mobile measurements

- Pedestrian mobile station
- Thin wire \rightarrow high frequency measurements (0.1s)
- Reference station located on a roof in the neighborhood

Introduction ${\sf Measurements}$ Mapping of relevant urban indicators Cross-analysis Conclusion Walking route

Walking route

- Every 3 hours during 3 days
- Length : 2,9km Duration : 1 hour
- 10 stop points in various urban fabrics

Step 1 : Correction of the temperature signal

Temperature with a raw GPS recording

0 m 200 m

Temperature with a corrected GPS recording

0 m 200 m

Introduction Measurements Mapping of relevant urban indicators ${\sf Cross-analysis}$ Conclusion ${\sf Plan}$

1 Introduction

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

5 Conclusion

11 urban parameters chosen

- 11 urban parameters chosen
- Manual mapping with GIS

- 11 urban parameters chosen
- Manual mapping with GIS
- Aggregation in buffers with a radius of 10m to 100m

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Example of the variability of the wall surface density

Wall surface density :Total wall surface of buildings intersected in a reference zone divided by the total surface of the reference zone (m^2/m^2)

Wall surface density

Introduction Measurements Mapping of relevant urban indicators ${\sf Cross-analysis}$ Conclusion ${\sf Plan}$

1 Introduction

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Cross-analysis of the temperature with the urban indicators

Objectives

To establish an **unique** statistical relation, valid for every cities and every seasons.

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Cross-analysis of the temperature with the urban indicators

Objectives

To establish an **unique** statistical relation, valid for every cities and every seasons.

Hypothesis

$$\Delta T_t(x) = Amp(t) \times Var(x)$$

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Relation between amplitude and weather conditions

- Test for many parameters : temperature, humidity, wind, shortwave and longwave radiation, 12 hours integrated radiation, cloud cover
- Test on every campaigns for every cities

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Relation between amplitude and weather conditions

- Test for many parameters : temperature, humidity, wind, shortwave and longwave radiation, 12 hours integrated radiation, cloud cover
- Test on every campaigns for every cities

Results with a multiple linear regression

Amp(t) = 0,58 + 0,0015 Ray + 0,053 T - 0,16 V_S - 0,041 Couv

ightarrow Hypothesis on the amplitude validated

 \rightarrow Hypothesis on the amplitude validated

Noisy measurements \rightarrow division in 9 zones

200 m

0 m

- Cité Python (PYTH)
- Stade (STAD)
- Rue Veber (VEBE)
- Grands boulevards (GRDB)
- EHPAD (EHPA)
- Rue de la Py (RUPY)
- Campagne à Paris (CAMP)
- Porte de Bagnolet (BAGN)
- Périphérique (PERI)

Noisy measurements \rightarrow division in 9 zones

1. Determination of the influence radius of each urban indicator

- 1. Determination of the influence radius of each urban indicator
- 2. Multiple linear regression for each city, day and night with urban indicators with their associated influence radius as explanatory variables

- 1. Determination of the influence radius of each urban indicator
- 2. Multiple linear regression for each city, day and night with urban indicators with their associated influence radius as explanatory variables

Example for Paris

$$\begin{cases} Var(x) = -0,051Shrub_{40} - 0,032Grass_{40} - 0,022BareSo_{40} + 0,037 & (R^2 = 0,92) day \\ Var(x) = 0,013Road_{60} + 0,060Bd_{40} + 0,023Tree_{70} + 0,038 & (R^2 = 0,90) night \end{cases}$$

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion

Evaluation of the hypothesis

 $\Delta T_t(x) = Amp(t) \times Var(x)$

Town	Model	R ²
Marseille	Marseille	0,68
	Global	0,29
Paris	Paris	0,45
	Global	0,37
Toulouse January	Toulouse 01	0,12
	Global	0,10
Toulouse April	Toulouse 04	0,14
	Global	0,06
Toulouse June	Toulouse 06	0,14
	Global	0,02

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion

Evaluation of the hypothesis

 $\Delta T_t(x) = Amp(t) \times Var(x)$

Town	Model	R²	
Marseille	Marseille	0,68	High variability of high vegetation
	Global	0,29	
Paris	Paris	0,45	High variability of
	Global	0,37	∫ built density
Toulouse January	Toulouse 01	0,12	
	Global	0,10	
Toulouse April	Toulouse 04	0,14	Low variability of
	Global	0,06	or high vegetation
Toulouse June	Toulouse 06	0,14	
	Global	0,02	

 \rightarrow no global relation !

Introduction Measurements Mapping of relevant urban indicators Cross-analysis $\ensuremath{\textbf{Conclusion}}$ $\ensuremath{\textbf{Plan}}$

1 Introduction

2 Measurements

3 Mapping of relevant urban indicators

4 Cross-analysis

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Conclusion

Conclusion

- Hypothesis $\Delta T_t(x) = Amp(t) \times Var(x)$ correct
- Amplitude linked to weather parameters
- No global statistical relation for every seasons or every cities

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Conclusion

Conclusion

- Hypothesis $\Delta T_t(x) = Amp(t) \times Var(x)$ correct
- Amplitude linked to weather parameters
- No global statistical relation for every seasons or every cities

Perspectives

Comparison to a CFD model

Pollutants field on the tolosan neighborhood

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Normalized temperature variability Var(x) by zones

- -Difference day/night(STAD,GRDB)
- Vegetated zones are fresh (STAD.EHPA.CAMP)
 Dense zones or with traffic are hot (VEBE, RUPY, BAGN, PERI)

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion Influence radius

For each city and each parameter, the coefficient R^2 coming from a linear regression between temperature variability and the variability of the parameter in a radius is calculated.

Introduction Measurements Mapping of relevant urban indicators Cross-analysis Conclusion

Seasons in Toulouse

