Multi-year energy balance and carbon dioxide fluxes over a residential neighborhood in a tropical city

Matthias Roth⁽¹⁾, Christer Jansson⁽²⁾ and Erik Velasco⁽³⁾

⁽¹⁾ Department of Geography, National University of Singapore, Singapore
⁽²⁾ Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
⁽³⁾ Singapore-MIT Alliance for Research and Technology, Singapore

Research context

- Vast majority of past energy balance and carbon flux work has been carried out outside the (sub)tropics
- Only very few studies are available from low latitudes: Miami (Newton *et al* 2007), Ouagadougou (Offerle *et al* 2005), Mexico City (Oke *et al* 1992 and 1999 and Velasco *et al* 2011), Singapore (Velasco *et al* 2013); of these cities only Singapore has truly tropical climate with extended wet season
- Understanding of energy and mass exchange in an important region of the world is therefore extremely poor
- Goal of present study is to quantify the energy balance and CO₂ fluxes for a residential neighborhood in a modern city located in a tropical-wet climate
- Focus on temporal variability (diurnal, seasonal and inter-annual)
- Attempt to understand controls on the surface energy and mass exchange and elucidate differences (if any) to those from temperate cities

Geographical setting of Singapore

1º 17'N / 103º 51' E

Data U.S. Navy Image © 2009 TerraMetrics Data © 2009 MIRC/JHA © 2009 Cnes/Spot Image

Mean monthly long-term climate normals

Location of EC measurement site

- Sensor height: $z_s = 20.7 \text{ m}$ - Bldg + tree height: $z_H = 8.85$ - $z_s = 2.2 z_H$
 - Compact low-rise, LCZ 3 - $z_0 = 1.1$ m; $z_d = 5.6$ m

- EC: 10 Hz sampling
- 30 min averages (linear de-trend)
- Double rotation (\overline{v} , $\overline{w} = 0$)
- WPL correction for Q_E , CO_2 flux
- $U < 0.1 \text{ ms}^{-1} \text{ removed}$
- Dir +/-15° removed
- Check for non-stationarity
- IRGA calibrated every ~6 months

Site characteristics

7.2

11.0

31.8

Av

Data availability during measurement period (03/2006-09/2013)

Measurement characteristics

80% footprint* <1000 m:

Velasco et al (2013)

Stable (z'/L > 0.1): 9% Neutral (-0.1 < z'/L <0.1): 62% Unstable (z'/L < -0.1): 29% NE: ~16,400IM1: ~12,300SW: ~18,300IM2: ~13,500NE (dry): ~3,800Clear: ~2,500

Wind regime and # of 30-min periods:

* Calculated using analytical model by Hsieh et al 2000 (Adv Water Res)

- Little seasonal variability; NE monsoon (cloudy) and IM (\neq Eqx) values are lowest - K_{in} values during clear conditions >1000 W m⁻²

- Kout mirrors Kin as expected

- Average albedo: 0.16

- Lowest during the NE monsoon season (wet); strong diurnal variability for "dry"

- High L_{in} and L_{out} values (role of temperature and moisture)
- Very little seasonal variability for L

Ensemble diurnal energy balance components

Ensemble diurnal energy balance

Annual variability of energy balance terms

 Overall features same as those of suburban sites in *eg* temperate regions

- Little month-to-month variability
- Year-round loss into substrate; artifact of energy balance closure?

Ensemble diurnal CO₂ flux

- Generally positive, but vegetation has clear effect during daytime

- Strong seasonal variability with larger sequestration/uptake during NE winds

Directional variation of CO₂ flux

 CO₂ flux is strongly modulated by the presence of local sources, i.e. road traffic in upwind source area during SW monsoon conditions

Final remarks

- Data presented enhance the geographic range of similar work to a grossly understudied region
- Diurnal variation and relative partitioning of energy balance fluxes at suburban site is similar to observations from cities in other climate regions
- Little seasonal variability in energy balance fluxes; higher (lower) Q_H and lower (higher) Q_E during relatively drier (wetter) SE (NE) monsoon period
- Suburban surface is a constant source of CO₂: magnitude of flux related to traffic emissions but also modulated by presence of vegetation
- Seasonality of CO₂ flux determined by emission sources in source area and therefore dependent on wind direction (no local heating/cooling sources which would emit CO₂)
- Present data are useful resource for evaluating models validation in a different climatic context

Thank you!

Monthly mean flux values

Temporal variation of 30-min CO₂ flux values

 Largest amplitudes during NE monsoon season (less traffic, more vegetation in footprint); highest values during SW monsoon evening rush hour

Measurement approach

Eddy covariance (EC) approach - most direct and defensible way to obtain fluxes

 $F_{CO2} = C + R - P + \Delta S$

- **C** Combustion
- **R** Respiration
- **P** Photosynthesis
- **ΔS** Storage change in air within balancing volume

$$Q^* + Q_F = Q_H + Q_E + \varDelta Q_S$$

- Q* Net allwave radiation
- **Q_F** Anthropogenic heat flux
- **Q_H** Sensible heat fux
- **Q_E** Latent heat flux
- △Q_s Storage heat flux (res)

Local-scale approach: Climate of neighborhoods with similar type of urban development; urban ecosystem of interest is represented within flux footprint