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Case & Storm Selection

United States storm-typing
database (Smith et al. 2012)
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“5C Convective Modes for Significant Severe Thunderstorms in the Contiguous United States.

Part I: Storm Classification and Climatology
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1. Introduction

Our understanding of the convective mode has in-
creased considerably in the past few decades, beginning
with the pioneering work by Browning (1964) doc-
umenting conventional radar observations and inferred
airflow within supercell thunderstorms, continuing with
descriptions of organized bow echoes (Fujita 1978), and
a host of more recent studies (e.g.. Weisman and Trapp
2003: Trapp and Weisman 2003) examining quasi-linear
convective systems (OLCSs). Convective mode is widely
recognized as an important cantributor to the likelihood
and type of severe convective weather {e.g., tomadoes,
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large hail, damaging wind gusts). Prior work by Trapp
et al. {2005, hereafter TO5) considered a rel: B

ple designation of the convective mode for 3828 torna-
does in the contiguous United States (CONUS) from
199% 1o 2001, They used regional radar mosaics of basc-
elevation reflectivity, and did not attempt to sp
convective mode beyond a QLCS, cell, or “other
sification scheme. Grams et al. (2012) followed =

scheme in classifying convective mode for 448 significant
tornado events in the CONUS from 2000 1o 2008, Gallus
et al. (2008, hereafter GO®) employed a more detailed
radar reflectivity classification scheme (nine distinet con-
vective morphologies), Like TO3, GOS examined re

radar reflectivity mosaics every 30 min for 949 cases of
documented convective mode, and associated all severe
reports with a storm vpe over the Great Plaing and
Uprer hadhvis: durng ne 70 wan, season, More
recent work by Luda ana Gales (2010) considered the




Data
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* Warning Decision Support System
— Integrated Information (WDSS- B
1) .
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Procedure
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Spatiotemporal Frequency of
Supercells (2006 2013)

Supercell Convective Initiation wi o Urban Interaction by Hour

Dallas-Fort 417 (27.5%) Peak Hours
Worth, TX
(6006 km?) E \)
Minneapolis, 251 (29.9%) W’
(2997 km?) %
Oklahoma 286 (17.3%) §
City, OK 2
(1284 km?)
Omaha, NE 217 (17.8%) @ “““
(810 kmz) Yo 7 o3 5 6 H ur[UTr] TRCEREE
Vet e 1171 . Supercel s most prevalent
e 22.4% of all storms in late afternoon/evening
interacted with urban hours (20 — 05 UTC)

environment



Supercell Initiation Locations
Dallas-Fort Worth, TX

Supercell Convective Initiation Locations - Dallas-Fort Worth
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Other City Initiation Statistics

Minneapolis, MN  Oklahoma City, OK

Omaha, NE

II;
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251 Urban Interactions 286 Urban Interactions 217 Urban Interactions
37.8% Urban Dome 41.3% Urban Dome 34.5% Urban Dome
Initiation Initiation Initiation

59.7% Killed in Urban 44.4% Killed in Urban 47.9% Killed in Urban

Dome Dome Dome



Supercell Lifetime

Minneapolis, 70.7 min. 83.6 min. P =0.006
MN Reject null at 99% ClI

Omaha, NE 69.8 min. 71.2 min. P = 0.68; Fail to reject null

Oklahoma 81.3 min. 96.7 min. P <0.001
City, OK Reject null at 99% ClI

Dallas-Fort 87.6 min. 103.9 min. P <0.001
Worth, TX Reject null at 99% ClI

* Mean storm lifetime for supercells interacting with the urban
dome is higher. Statistically significant at 99% Cl except Omaha

* However, where a supercell forms is critical

e Supercells forming within the urban dome had lower mean
lifetimes over supercells forming outside the urban dome



Radar-Derived Metrics for Storm Intensity

34 radar-derived/other storm attributes tracked each
minute

e Storms were sampled every 10 min. to mitigate correlation
between successive observations

e Three metrics shown:

— Maximum Expected Size of Hail (MESH)

* Thermally weighted integration of reflectivity (> 40 dBZ) from the
melting level to storm top

— Composite Reflectivity Size > 40 dBZ
» Total area [km?] of the 40 dBZ pixels in the tracked feature
— Cloud-to-Ground (CG) Lightning Density

* Density of CG strikes in a 1km x 1km spatial by 1 min. temporal domain



Storm Intensity Metric: MESH

Dallas-Fort Worth, TX & Dallas-Fort Worth, TX
Omaha, NE

— Decline in MESH on city
interacting trajectories ~ 1 [
mm

* Omaha differences
statistically significant at
95% ClI

Minneapolis, MN &

Oklahoma City, OK :
— Sli ght increase in mean w185 Storm Status 735

MESH; 0.1 mm City No City

+0.11 mm




Storm Intensity Metric: Area of Composite Reflectivity
> 40 dBZ
Dallas-Fort Worth, TX,
Omaha, NE,
Minneapolis, MN

— City interacting
trajectories had a higher
overall area > 40 dBZ

DaIIas-Fororth TX

Oklahoma City, OK

— Opposite effect __
— Dryline forcing, early CI? City "~ No City

+132.5 km? +102.2 km? -38.9 km?



Storm Intensity Metric: CG Lightning Density

Dallas-Fort Worth, TX, Dallas-Fort Worth, TX
Omaha, NE, | _

Minneapolis, MN

— Higher mean CG density in j#
storms that interact with [
the city

Oklahoma City, OK

— Lower mean CG density in
storms that interact with
the city

° ? o
Lack of tall structures- Ci

ty sworm stana No City

+2.8 min-tkm?2 -0.9 min-lkm? +1.0 min‘tkm? +0.9 min-lkm?



Summary

5,230 supercells tracked across 1,276 convective days from 2006-
2013
Storm Lifetime Analysis

— At least 33% of storms initiated within the urban dome
* Larger cities had more in-dome initiations and subsequent deaths

— At least 50% of storms formed outside urban dome end within

urban dome
* The remainder of these storms had the longest lead times

Radar-derived Metrics

— Variable magnitude of difference depending on the metric
chosen

— Largest & smallest cities showed similar trends in MESH,
composite area, and CG densities

— No single metric showed significant trend across all cities
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