ICUC9 21July2015

Numerical simulation of urban influence on summertime precipitation in Tokyo

- How does urban temperature rise affect

N. Seino, T. Aoyagi and H. Tsuguti Meteorological Research Institute, Tsukuba, Japan

This work is partly supported by the SOUSEI program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan¹

How much is urban impact on rainfall in Tokyo?

Long-term Change and Spatial Anomaly of Warm Season Afternoon Precipitation in Tokyo, Fujibe et al., 2009.

Fig. 1. Six-hourly precipitation amount at Tokyo for 1700–2300 JST from June to August, averaged for NPP and all the cases. Each vertical bar (blue) indicates the value for each year.

Annual number of days with precipitation >= 100 mm in 51 stations in Japan

Climate change monitoring report $(JMA, 2013) \rightarrow$

Fig. 2. Linear trend B/A for each time of the day and month for NPP cases. Hatching and double hatching indicate the regions where the trend is significant at the 5% and 1% levels, respectively.

Aim of this study

 To evaluate the impact of intensified urbanization (temperature rise) in Tokyo on precipitation in its vicinity

- Comparative experiment to examine how urban temperature change in Tokyo affects monthly precipitation in its neighboring area.

Model

Non-Hydrostatic Model of JMA(JMA-NHM) with 2 km grid interval

Specifications of NHM (Saito et al., 2006, 2007)

Governing equations	Fully compressible, non-hydrostatic
Discretization	Grid point method, z*-coordinate
Treatment of advection	4th order flux form, advection corrected
Map projection	Lambert conformal projection
Topography	GTOPO30
Cloud microphysics	Bulk scheme with ice phase predicting qv, qc, qr, qi, qs, qg
Cumulus parameterization	Not used for dx < 4 km
Turbulent closure	Improved MY3(Nakanishi & Niino, 2006)
Cloud radiation	Kitagawa (2000)
Clear sky radiation	Yabu, Murai and Kitagawa (2005)
Clouds in radiation processes	Partial condensation scheme
Surface flux	Beljaars and Holtslag (1991)
Urban canopy	SPUC scheme (Aoyagi and Seino, 2011)

Square Prism Urban Canopy scheme

- Regular array of buildings
- Aspect ratio H/B =
 0.5 is used
- Precipitation trapping taken into account
- Anthropogenic heating (Senoo et al, 2004)

Aoyagi and Seino (2011)

Experimental design

Model: JMA-NHM with/without SPUC Central Japan dX=2km 200x200x50 grids Domain: Initial/Boundary conditions: JMA Mesoscale Analyses August 2006-2013 (8 years) Period: 27-hour Integrations starting 21JST everyday

 SPUC is worked at grids where more than 80% of the grid area is occupied with urbanized land use

Results: Simulated temperature

Monthly mean temperature: 2006-2013 mean

- •**SPUC** : mean temperatures agree well with observations
- •**SLAB** : slightly lower temperatures are simulated

Monthly precipitation: August 2006-2013

Radar-rain gauge based precipitation amount (JMA)

Monthly precipitation: 2006-2013 mean

Area-average precipitation

Area-average precipitation

The largest difference, roughly 10 % increase, is found in the center domain D1. Differences gradually decrease as the domain extends

11

Initiation or enhancement?

Number of rainy days in the center domain D1

Precipitation occurred only in SPUC(SLAB): 9(3)/105 cases

Majority of precipitation increase was attributed to enhancement in remaining cases (within D4)

Downstream or urban center?

On average largest increase in rainfall appeared in center

Statistically significant increase in precipitation was found within domain D4

Downstream or urban center?

On average largest increase in rainfall appeared in center

Statistically significant increase in precipitation was found within domain D4

Summary

Comparative simulations for 8-years August suggest

- At most 1 degree mean temperature rise resulted in 10% precipitation increase in central Tokyo with slight (less then 1%) near-surface vapor decrease
- Enhancement of precipitation system rather than initiation is likely to contribute more to the precipitation increase as far as in 2km resolution
- Intensified convergence in urban center (enhanced heat island circulation) plays important role for the mean precipitation increase
- Need for the comparison with observations in heavy rain cases \rightarrow Next presentation (Belair et al.)
- Future works: evaluation of other factors impact

Composite for afternoon NPP cases in D1

Composite for 68 afternoon non-preceding precipitation cases in D1

Outline of numerical model

Model: JMA-NHM (Saito et al., 2006, 2007) with urban canopy scheme SPUC (Aoyagi & Seino, 2011)
Initial/Boundary condition: JMA Mesoscale Analysis
Domain: Central Japan dX=2km 200x200x50 grids
Cloud microphysics: Bulk scheme with ice phase
Turbulent closure : Improved MY3(Nakanishi & Niino, 2006)

(Senoo et al., 2004)

18

SPUC - applied grid

Monthly precipitation: August 2006-2013

Simulation results of SLUC

