

Preserving Overall Performance of Air Conditioners by Incorporation of Wind-Permeable Floor in Buildings

Presenting Author: Karl AN

Other Authors: Ross WONG, Dr. Kelvin SIN, Prof. Jimmy FUNG, Prof. Zhigang LI

July 2015

Hong Kong University of Science and Technology

Outline

- Introduction
- Methodology
- Homogeneity of Profiles
- Model Geometry Settings
- Results and Conclusion
- Future Work

- Hong Kong is one of the most extensively urbanized areas in the world with high population density. Seven and a half million inhabitants live in an area of about a thousand kilometers square
- Large amount of heat generated from the streets and buildings without enough airventilation causes the Urban Heat Island (UHI) phenomenon

Source: (Photo extracted from research studies by Prof. Yuguo Li)

Large portion of energy consumption (>30%) and heat production in the residential area is by the refrigeration cycle of air-conditioning. The outdoor temperature determine the cycle efficiency, coefficient of performance (COP)

- Thermal stack effect is formed when heated air is driven upward and accumulated through the semienclosed building developed by thermal buoyancy
- Field measurement reveals there could be a temperature difference of at least 10°C over a 24 storeys building
- Overall percentage drop in COP of air conditioners could reach a maximum of 26% under no-wind condition.

Building acts like a perforated tub

Aim of the Study

- Investigate the effectiveness of the implementation of an open permeable floor in designs of buildings to alleviate the residual heat ejected by outdoor condensing units that is accumulated within semi-enclosed re-entrants of buildings
- 2. Investigate the group performances of air conditioners after the implementation of the open permeable floor
- 3. Aid the developers/architects during building design stage to achieve a "greener" building

Introduction Methodology Homogeneity Model Geometry Results and Future of Profiles Settings Conclusion Work

$k - \varepsilon$ Model with Corrective Terms

Continuity Equation:
$$\rho \frac{\partial u_i}{\partial x_j} = 0$$

Momentum Equation: $\rho u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial}{\partial x_j} (\tau_{ij} - \rho \overline{u'_i u'_j}) - \frac{\partial p}{\partial x_i} + \rho g_i$
Turbulent Kinetic Energy Equation: $\rho u_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k - \rho \varepsilon + S_k$
Turbulent Dissipation Rate Equation:
Turbulent Dissipation Rate Equation:
Second Second Second

Introduction Methodology Homogeneity Model Geometry Results and Future of Profiles Settings Conclusion Work

- Simulation is carried on an empty fetch with dimensions 2000 m (L) x 1000 m (W) x 600 m (H)
- Around 1.5 million structure cells are created with first cell size of 0.5m
- Grid Expansion Ratio of at most 1.2 in both horizontal and vertical directions
- Standard Wall Function with roughness height set to 20z₀ where z₀= 0.002m

Homogeneity Model Geometry **Results and Future** Introduction Methodology Settings Conclusion of Profiles Work **Inflow Profiles for Empty Fetch** $u(z) = \frac{u_*}{\kappa} \left[\ln(\frac{z}{z_0}) - \psi_m(\frac{z}{L}) \right] \qquad \text{where} \quad L = \frac{u_*^2 \vartheta_0}{\kappa g \vartheta_*}$ Inflow Velocity Profile: Inflow Temperature Profile: $\vartheta(z) = \vartheta_0 + \frac{\vartheta_*}{\kappa} \left[\ln(\frac{z}{z_0}) - \psi_h(\frac{z}{L}) \right]$ where $\vartheta_* = \frac{-q_0}{\rho c_n u_*}$ Inflow TKE Profile: $k(z) = \frac{u_*^2}{\sqrt{C_{\mu}}} \sqrt{\frac{\varphi_{\varepsilon}(z/L)}{\varphi_m(z/L)}}$ where $\varphi_{\varepsilon} = 1 - \frac{z}{L}$ for L < 0Inflow TDR Profile: $\varepsilon(z) = \frac{u_*^3 \varphi_{\varepsilon}(z/L)}{z}$ $\varphi_{\varepsilon} = \varphi_m - \frac{z}{L}$ for L > 0

where
$$\varphi_m = \varphi_h = 1 + 5(\frac{z}{L})$$
 for $L > 0$,
 $\varphi_m = (1 - 16\frac{z}{L})^{-0.25}$ for $L < 0$
 $\varphi_h = (1 - 16\frac{z}{L})^{-0.5}$

	Stability Class	z ₀ (m)	u₊ (m/s)	q ₀ (W/m ²)	ϑ _o (K)	L (m)
1	Neutral	0.002	0.4815	0	298	∞
2	Stable	0.002	0.473	-30	283	306.0
3	Unstable	0.002	0.5085	100	313	-126.1

Introduction Methodology Homogeneity Model Geometry Results and Future of Profiles Settings Conclusion Work

Velocity and Temperature Profiles at Various Locations along Centre Line

- Typical 30 storey (3 meters per floor) cross shaped residential building with air conditioners installed at re-entrants is investigated
- > Two buildings, with/without permeable floor at mid-level are created for comparison
- ➤ 4 air conditioners are placed at each re-entrant location of the building
- Each air conditioner is modeled as a volumetric heat source, generating 2500W of heat
- Temperature Data are extracted at three locations A, B and C

- Approximately 3 million structure cells are created
- Target building is set 5H away from the inflow, lateral, top sides and 15H away from outflow face where H=95m
- Boundary conditions are same as the empty fetch case
- Second Order upwind schemes are used for the discretize the advection terms
- \blacktriangleright Scaled residuals of flow and turbulence quantities dropped below 1 x 10⁻⁵

	Stability Class	z ₀ (m)	u∗ (m/s)	u ₁₀ (m/s)	q ₀ (W/m ²)	ϑ _o (K)	Δϑ (K)	L (m)
1	Neutral	0.002	0.1205	2.5	0	303	0.98	∞
2	Neutral	0.002	0.2405	5	0	303	0.98	∞
3	Neutral	0.002	0.4815	10	0	303	0.98	8
4	Stable	0.002	0.102	2.5	-3.04	303	-0.57	32.42
5	Stable	0.002	0.227	5	-11.14	303	-0.57	97.52
6	Stable	0.002	0.473	10	-30	303	-0.57	327.62
7	Unstable	0.002	0.1545	2.5	40.5	303	4.52	-8.46
8	Unstable	0.002	0.2745	5	61.4	303	4.52	-31.29
9	Unstable	0.002	0.5085	10	100	303	4.52	-122.12

ntroduction	Methodology	Homogeneity	Model Geometry	Results and	Future Work		
Infoduction		of Profiles	Settings	Conclusion			
Summary Table of the CFD model							
			CFD model				
Computatio	Computational domain size			5H for inflow buffer, lateral and vertical region			
				15H downstream region (H=95 meters)			
			Symmetry condition for the two side boundaries Top specified stress				
Boundary co	Boundary conditions		Wall boundary cond	Wall boundary condition for the ground			
			Velocity inlet condit	Velocity inlet condition for the inflow boundary			
			Zero gradient condi	Zero gradient condition for the outlet boundary			
Turbulence model			k-ε model with corr	k-ε model with corrective source terms			
Mesh Grids			Approximately 3 mi	Approximately 3 million structure cells			
Numerical scheme for pressure term and advection terms			PRESTO! for the pre Second order upwin terms	PRESTO! for the pressure term Second order upwind schemes for advection terms			
Wall functio	n		Standard wall funct	Standard wall function			
Convergence	e criteria		Scaled residuals dro	Scaled residuals dropped to below 1×10 ⁻⁵			
Air Conditio	ner Heat Source		2500W per air conc	2500W per air conditioner			

Results and Homogeneity **Model Geometry** Introduction Methodology of Profiles **Conclusion Settings**

Future

Work

Temperature Profiles Leeward Re-entrant Without Wind Permeable Floor - neutral: 2.5m/s Wind Direction - neutral; 5m/s 330 -- neutral; 10m/s sidential Unit stable; 2.5m/s stable: 5m/s stable: 10m/s 320 unstable: 2.5m/ unstable: 5m/s unstable: 10m/s **Building Core** £ ⊢ 310 . B 300 290 20 40 60 80 0 z (m) Leeward Re-entrant With Wind Permeable Floor neutral: 2 5m/s neutral: 5m/s 330 neutral; 10m/s stable: 2.5m/s - stable: 5m/s stable; 10m/s 320 unstable; 2.5m/ – unstable; 5m/s - unstable: 10m/s Ƴ ⊢ 310 300 290 -20 40 60 80 z (m)

- Under stable atmosphere, the temperature drop at location of the open permeable floor are not as obvious those cases under the neutral and unstable atmosphere
- Under neutral/unstable atmosphere, a minor drop of 0.5 °C is observed for the cases with mid/high inflow wind magnitude and drop of approximately 1 °C to 2 °C is observed for the low wind cases
- Despite there is decline in temperature at location C, the drop is not as sharp when compared to the sideward reentrant at location B

CGPI for n air conditioners working together is defined as:

$$CGPI_{T_{r}}(T_{ref}) = \frac{100}{n} \sum_{i=1}^{n} \{1 - [\frac{COP_{T_{r}}(T_{coil})}{COP_{T_{r}}(T_{ref})}]_{i}\}$$

where $T_{ref} = 303K$ and T_{coil} extracted from the simulated temperature at geometric center of air conditioners

$$\text{COP}_{\text{T}_{\text{r}}}(\text{T}_{\text{coil}}) = 5.15 - 0.0738(\text{T}_{\text{coil}} - 273)$$

- Smaller the CGPI, the better the efficiency of air conditioners
- Improvement in CGPI is significant particularly under neutral and stable stratifications with low inflow wind
- Open Permeable Floor is relatively useful to alleviate thermal stack effect under neutral/stable low wind environment compared to other atmospheric conditions with higher wind speed

Conclusions

- 1. After Implementation of Open Permeable Floor in residential blocks:
 - > Elevated air passing through the floor is cooled by natural means
 - Residents above the permeable floor are expected to benefit from better thermal comfort than those below
 - Performance of air conditioners (particularly above the Permeable Floor) are retained with lower operating temperature
 - Over 10% enhancement in CGPI (reflecting group performances of the air conditioners) is achieved.
- 2. The cooling effect by permeable floor is shown to be more significant under neutral/stable atmosphere with low wind speed compared to other atmospheric stability cases with higher wind speed

Future Work

- Influence of location of Permeable Floor on Temperature Profiles and CGPI values will be investigated
- Influence of different inflow wind angle of attack on the results will also be investigated
- Study would be further carried out on a model of a real urban area with topography and clusters of buildings with different shapes and heights

THANK YOU!

