Assessment of urban cooling strategies using a coupled model for urban microclimate and building energy simulation

<u>Adrien Gros</u>^{a,d}, Emmanuel Bozonnet^{a,d}, Christian Inard^{a,d}, Marjorie Musy^{b,d}, Isabelle Calmet^{c,d}, ^aUniversity of La Rochelle, LaSIE, ^bENSA of Nantes, CRENAU ^cEcole Central of Nantes, LHEEA, ^dIRSTV Research Federation

Summary

- Introduction
- The modeling tool
- The case study
- Results
- Conclusion

Introduction

Buildings context

Buildings in Europe :

- 40% of energy consumption
- 36% of CO_2 emission

Building Energy Simulation (BES)

Coupling urban microclimate and BES:

- Improve description of outdoor for BES
- Use landscaping to reduce energy demand
- Impact of building on microclimate

The modeling tool

EnviBatE

EnviBatE: Numerical mockup Mesh adapted to BES

Surfacic mesh

ICUC

Volumic mesh

Classing

EnviBatE: models

The case study

Buire district

The case study – Buire district presentation

Existing district:

- 70,000 m²
- 10 buildings block
- 8 or10 floors by buildings (24-30 m high)
- Residential buildings

ICUCo

Goal of the study

Two scenario: Actual case

Greened case :

- size of tree is doubled
- Space between building is greened

Impact of urban landscaping : •Microclimate

•Building energy demand

Results

First results with radiative coupling

Results for actual case

- From the 1st of May to the 30th of September
- Indoor temperature set point equal to 26°C North

Cooling demand(kWh/m²)

17.8	19.8	21.8	23.8	25.9	27.9	29.9	31.9	34	36	38

Co

- 50% of cooling energy demand $< 33 \text{ kWh/m}^2$
- Minimum values on ground floor

Results for actual case

19th of July at 2 PM (solar time), meteorological ambient temperature equal to 31°C

- Maximum values (55°C) on ground
- Low values (28°C) on windows

Results: impact of green scenario

Maximum decrease $\approx 3\%$

Relatively low value because tree already exist in reference case

Conclusion

- Developed model:
 - simulation during a seasonal period (hourly time step)
 - BES for each building at district scale
- Study case:
 - Impact of vegetation

Outlooks

- Study of other cooling strategies : cool paint, watering road
- Use experimental data of reduced scale model to validate models

CLIMABAT (1:10 reduced scale model)

Thank you!!

Acknowledgement:

(QUICURB model)

(Solene model)

(Project partner)

(Financial support)

