Assessment of urban cooling strategies using a coupled model for urban microclimate and building energy simulation

Adrien Grosa,d, Emmanuel Bozonneta,d, Christian Inarda,d, Marjorie Musyb,d, Isabelle Calmetc,d,

aUniversity of La Rochelle, LaSIE, bENSA of Nantes, CRENAU
cEcole Central of Nantes, LHEEA, dIRSTV Research Federation
Summary

• Introduction
• The modeling tool
• The case study
• Results
• Conclusion
Buildings context
Buildings in Europe:
- 40% of energy consumption
- 36% of CO₂ emission

Urban context
Coupling urban microclimate and BES:
- Improve description of outdoor for BES
- Use landscaping to reduce energy demand
- Impact of building on microclimate

Building Energy Simulation (BES)
The modeling tool

EnviBatE
EnviBatE: Numerical mockup

Mesh adapted to BES

Urban Canopy

Surfacic mesh

Volumic mesh
EnviBatE: models

SOLENE
- Direct and diffuse solar irradiances
- Form factor

QUICURB
- Velocity fields in urban canopy
- Air mass flows between canopy cells

Reduced building thermal model
- Weighted factors method

Conductive heat fluxes
- Outdoor temperature
- Outside surface temperature
- Energy demand/indoor temperature

SW and LW irradiance
The case study

Buire district
The case study – Buire district presentation

Existing district:
- 70,000 m²
- 10 buildings block
- 8 or 10 floors by buildings (24-30 m high)
- Residential buildings
Goal of the study

Two scenario:
- Actual case
- Greened case:
 - size of tree is doubled
 - Space between building is greened

Impact of urban landscaping:
- Microclimate
- Building energy demand
Results
First results with radiative coupling
Results for actual case

- From the 1st of May to the 30th of September
- Indoor temperature set point equal to 26\textdegree C

- 50\% of cooling energy demand < 33 kWh/m2
- Minimum values on ground floor
19th of July at 2 PM (solar time), meteorological ambient temperature equal to 31°C

- Maximum values (55°C) on ground
- Low values (28°C) on windows
Results: impact of green scenario

Maximum decrease ≈ 3%

Relatively low value because tree already exist in reference case
Conclusion

• Developed model:
 • simulation during a seasonal period (hourly time step)
 • BES for each building at district scale

• Study case:
 • Impact of vegetation
Outlooks

• Study of other cooling strategies: cool paint, watering road
• Use experimental data of reduced scale model to validate models

CLIMABAT (1:10 reduced scale model)
Thank you!!

Acknowledgement:

(QUICURB model) (Solene model)

(Project partner) (Financial support)