9th International Conference on Urban Climate 12th Symposium on the Urban Environment # Outdoor human comfort and climate change. A case study in the EPFL campus in Lausanne Silvia Coccolo, Jérôme Kämpf, Jean-Louis Scartezzini #### INTRODUCTION Increase urban population Climate change People health and behaviours 1900 | 2 out of every 10 people lived in an urban area 1990 | 4 out of every 10 people lived in an urban area 2010 | 5 out of every 10 people lived in an urban area 2030 | 6 out of every 10 people will live in an urban area 2050 | 7 out of every 10 people will live in an urban area (UN HABITAT 2012) #### INTRODUCTION ## EPFL_ "Energy Concept 2015-2045": - -30% of final energy - ++ electricity coming from renewables - -50% CO₂ emission #### INTRODUCTION Increase energy reference area (+25% since 2001) District heating system is facing its efficiency limitation Energetic model of the campus Thermic behaviour in 2050 Outdoor human comfort (2050 and 2100) ## METHODOLOGY_ Energy demand Physical characteristics of envelope by period of construction (1972-1984, 1980-2002 and today) Occupants behaviour (SIA2024) BiPV 2,000 m² and 2,000 kWh/year # METHODOLOGY_Outdoor Human Comfort ## METHODOLOGY_ Outdoor Human Comfort #### Actual Sensation Vote (ASV) $$ASV = 0.068T_a + 0.0006R_g - 0.107v - 0.002RH - 0.69$$ ## **COMFA*** Budget $$B = M + R_{RT} - C - E - L$$ Case study A ## METHODOLOGY_ Weather scenarios - 2050 and 2100-B1 - 2050 and 2100-A1B - 2050 and 2100-A2 Air temperature +5°C and +8°C (summer) Precipitations -13 to -27 % (summer) # RESULTS_ Energy demand ## RESULTS_ Energy demand Refurbishment according to Minergie and Minergie-P Best: Minergie-P in 2050-B1 (cooling +50%, heating demand -89%) #### RESULTS_ Outdoor Human Comfort #### **ASV** 2,050: cool and cold events -4% warm and hot events +20% 2,100-A2: warm/hot hours will double (1,316 hours ~ 55days) ## RESULTS_Outdoor Human Comfort COMFA* model_ microclimate Day time hours (from 8 am to 7 pm) # RESULTS_Outdoor Human Comfort # RESULTS_Outdoor Human Comfort Shadowing strategies Picea Rubens 0 kWh/m2 Betula Utilis #### **CONCLUSIONS** Energy behaviour of EPFL campus Outdoor human comfort_ artificial and semi natural environment Cooling devices (indoor) and passive strategies (outdoor) FUTURE WORK Energy Hub Model Evapotranspiration in plants design 9th International Conference on Urban Climate 12th Symposium on the Urban Environment # Outdoor human comfort and climate change. A case study in the EPFL campus in Lausanne Silvia Coccolo, Jérôme Kämpf, Jean-Louis Scartezzini