Introduction	Methodol 000000		Results oooooo	Conclusion o
Taking	i into acc	count buildin	g environme	ent
		consumptio	~	
Benjarr	nin Morille ¹	Nicolas Lauzet ²	Marjorie Musy	/ ^{1,2}

¹Institut de Recherche en Sciences et Technique de la Ville, FR CNRS 2488, Nantes, France

²Centre de Recherche Nantais Architectures Urbanités, AAU UMR CNRS 1562, Nantes, France

Introduction	Methodology	Results	Conclusion
●○	000000	oooooo	o

Context

Reduction of building energy consumption

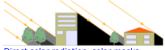
- 44% of the energy consumption in France
- Thermal regulation more and more exigent

Tools to evaluate energy consumption in a accurate way

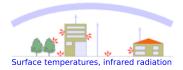
- Improvements to take into account building environment
- Keep operational tools with acceptable time computation

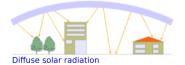
Introduction	Methodology	Results	Conclusion
00	000000	000000	

Objectives of the study


- Evaluation of the influence of the building environment on the energy consumption.
- Variation of this influence with the urban density.

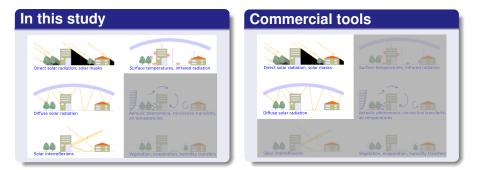
Preliminary findings...


- When is it (or not) necessary to take into account the influence of the urban environment in dynamic thermal simulation models?
- How to efficiently take urban environment into account?


Introduction	Methodology	Results	Conclusion
	●00000		

The building environment : physical phenomenon

Direct solar radiation, solar masks



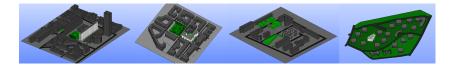
Introduction	Methodology	Results	Conclusion
	o●oooo	000000	o
Thermal building	na environment		

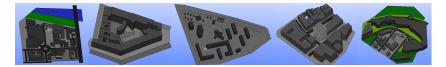
- Focus on the radiative exchanges
- Comparison with building energy consumption computed by commercial tools

Introduction	Methodology	Results	Conclusion
00	ooeooo	000000	o

Methodology

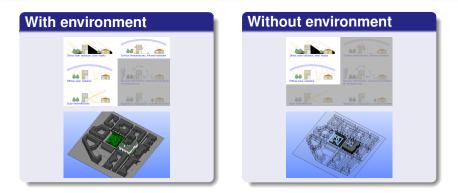
9 districts with various densities


• Lyon (3)


• Strasbourg (2)

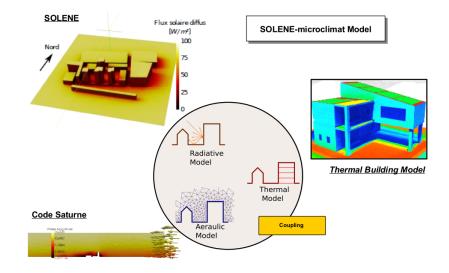
Nantes (2)

• Paris (2)

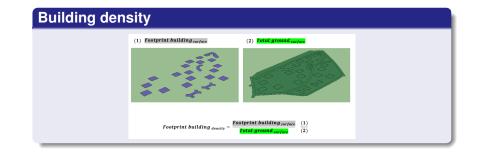


Introduction	Methodology	Results	Conclusion
	○○○●○○	000000	o

Methodology

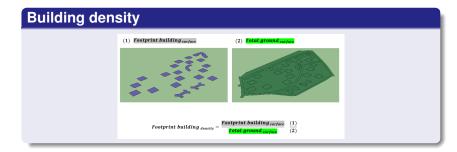


Simulation period

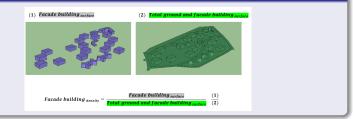

- Winter season : December 21th
- Summer season : June 21th
- Initialisation : 14 days

Introduction	Methodology	Results	Conclusion
	oooooo	oooooo	o

SOLENE-microclimat

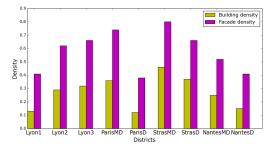


Introduction	Methodology	Results	Conclusion
	oooooo●	000000	o
Density indicators			



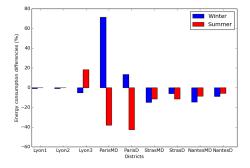
Introduction	Methodology	Results	Conclusion
oo	○○○○○●	000000	o

Density indicators



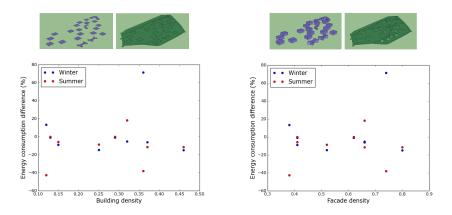
Facade density

Introduction	Methodology	Results	Conclusion
		000000	


Densities of the selected districts

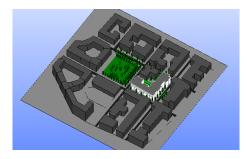
- Good heterogeneity of the district densities
- The higher the building density, the higher the facade density

Introduction	Methodology	Results	Conclusion
		00000	

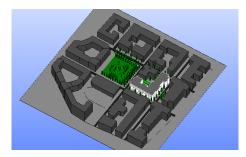

Energy consumption differencies

- Buildings slightly impacted in winter are also slightly impacted in summer
- Surprising results for some cases.

Introduction	Methodology	Results	Conclusion
		00000	

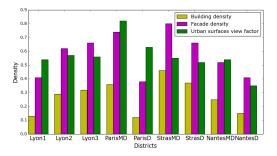

Energy consumption linked with the density

- No obvious dependency with building density
- No obvious dependency with facade density

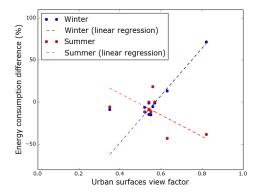

Introduction	Methodology	Results	Conclusion
oo	oooooo	○○○●○○	o


Urban surfaces view factor

Introduction	Methodology	Results	Conclusion
	000000	○○○●○○	o


Urban surfaces view factor

Introduction	Methodology	Results	Conclusion
	000000	○○○○●○	o


Urban surfaces view factor

 New density indicator without correlation with the two first ones.

Introduction	Methodology	Results	Conclusion
		00000	

Energy consumption Vs urban surfaces view factor

- Uncertainity on the correlation
- The study require buildings presenting heterogeneity in their urban surface view factor

Introduction	Methodology	Results	Conclusion
	oooooo	oooooo	•
Conclusion			

• Taking into account buinlding environment : more then 50% differencies

Conclusion

- No correlation with building density and facade density
- Urban surface view factor presents better correlations
- Urban surface view factor values have to be with a better heterogeneity
- Investigate more in detail the influence of radiation transferts :
 - study the infuence of solar and infrared radiation independantly
 - use less integrated density indicator. Do investigation floor by floor
 - study the influence of the albedo values.

Introduction	Methodology	Results	Conclusion
oo	000000	000000	●
Conclusion			

• Taking into account buinlding environment : more then 50% differencies

Conclusion

- No correlation with building density and facade density
- Urban surface view factor presents better correlations
- Urban surface view factor values have to be with a better heterogeneity
- Investigate more in detail the influence of radiation transferts :
 - study the infuence of solar and infrared radiation independantly
 - use less integrated density indicator. Do investigation floor by floor
 - study the influence of the albedo values.

Thank you for your attention!!!