Shading Effect of Alley Trees and Their Impact on Indoor Comfort

Flóra Szkordilisz
MSc Architect, PhD candidate
Budapest University of Technology and Economics

Márton Kiss
MSc Geographer, Assistant lecturer
Department of Climatology and Landscape Ecology,
University of Szeged
The Issue

■ UHI energy efficiency

■ Urban heat island → summer heat stress → health problems
■ Trying to create a tolerable indoor comfort → mechanical cooling → drastic increase of electricity-use during the summer period
■ EU aims to mitigate energy consumption in building sector (EPBD recast: nZEB, EED)
■ Green Infrastructure development goals (EU Biodiversity Strategy 2020)
Analysis

Aims:

• investigate the importance of shading effect of alley trees on indoor thermal comfort
• analyse species-dependence of the effect
• form a base for targeted model development/adaptation (e.g. i-Tree)
Field measurements

Study area:
Szeged (Hungary)

Tree species:
Sophora japonica
Tilia cordata
Celtis occidentalis
Transmissivity measurements:

• the indicator of shading effect (ratio of irradiance (shortwave radiation) in shaded and reference point)

• Measurements were made for vertical plane

• Kipp&Zonen CNR 1,2 pyranometers

• 3*2 measurement days
Results 1.

Common hackberry 1

Japanese pagoda 1

Common hackberry 2

Japanese pagoda 2
Results II.

<table>
<thead>
<tr>
<th></th>
<th>τ (%)</th>
<th>σ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celtis occ.</td>
<td>11,3</td>
<td>7,5</td>
</tr>
<tr>
<td>Sophora j.</td>
<td>16,6</td>
<td>7,6</td>
</tr>
<tr>
<td>Tilia cord.</td>
<td>12,0</td>
<td>7,6</td>
</tr>
</tbody>
</table>

- high variability of transmissivity values
- influence of tree condition
- considerable differences between species in radiance transmissivity
 ➔ effects on indoor thermal comfort
Modelling

- Modelling was carried out with Autodesk ECOTECT software.
- Aim is to give more general approach of the shading effect of alley trees.
- Measurements were carried out on an ideal model.

- **The model** consists of a cubic room: 12 x 6 x 4 m.
- **Wall:** thin brick structure covered with plaster.
- **Windows:** double glazed, timber framed.
- **Tree:** spherical polygons, material transparency is taken from the pyranometer measurements.
- **Modelling day:** typical summer day (16th July).
Shaded by Small-leaved linden
Shaded by Japanese pagoda
Shaded by Common hackberry

Modelling

Total Radiation
Value Range: 400 - 1200 Wh
© ECOTECT
Results

Cumulative value of solar gain on vertical surface [kWh]

<table>
<thead>
<tr>
<th></th>
<th>Case without tree</th>
<th>Shadowed by Common hackberry</th>
<th>Shadowed by Japanese pagoda</th>
<th>Shadowed by Small-leaved lime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1,98</td>
<td>0,81</td>
<td>1,60</td>
<td>1,49</td>
</tr>
<tr>
<td>Minimum</td>
<td>1,72</td>
<td>0,46</td>
<td>1,18</td>
<td>1,05</td>
</tr>
<tr>
<td>Maximum</td>
<td>2,00</td>
<td>1,28</td>
<td>1,92</td>
<td>1,90</td>
</tr>
<tr>
<td>Rate of reduction in percent</td>
<td>0%</td>
<td>60%</td>
<td>19,30%</td>
<td>24,80%</td>
</tr>
</tbody>
</table>
Modelling

Tilia cord.

Total Radiation
Value Range: 400 - 1200 Wh
© ECOTECT US
Results

<table>
<thead>
<tr>
<th>Cumulative value of solar gain on horizontal surface [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case without tree</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Rate of reduction in percent</td>
</tr>
</tbody>
</table>
Results

HOURLY TEMPERATURES - SJOBA

NOTE: Values shown are environment temperatures, not air temperatures.
Results

Investigating indoor temperatures

- **Three wall types:**

<table>
<thead>
<tr>
<th></th>
<th>heavy-weight</th>
<th>light-weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>insulated</td>
<td>Concrete wall with 18 cm thermal insulation.</td>
<td>Wooden wall with 16 cm thermal insulation.</td>
</tr>
<tr>
<td></td>
<td>U-value: [0.17 W/m²K]</td>
<td>U-value: [0.18 W/m²K]</td>
</tr>
<tr>
<td>not insulated</td>
<td>Brick wall, plastered,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-value: [1.01 W/m²K]</td>
<td></td>
</tr>
</tbody>
</table>

- **Window opening scenarios**
Results

Indoor air temperatures in different cases (structures and shading scenarios) on a typical summer day

- Outside temperature
- Concrete wall, without tree
- Concrete wall, shaded by Japanese pagoda
- Wood wall, without tree
- Wood wall, shaded by Japanese pagoda
- Brick wall, without tree
- Brick wall, shaded by Japanese pagoda

Air temperature [°C]

Hours of the day
Results

Potential of natural ventilation

Air temperature [°C] vs. Hours of the day

- Outside temperature [°C]
- Closed window, shaded by c. hackberry
- Open window, shaded by c. hackberry
- Closed window without tree
- Open window without tree
Summarising results

• Trees have an important role in mitigating total radiation on building facades and indoor surfaces.
• The effectivity of shading depends mainly on vertical transmissivity, which is a species-dependent characteristic of trees.
• A tree in front of the building
 • Diminishes the total irradiance on vertical surface up to 60%.
 • mitigates indoor temperature by \(\Delta T_{air,\text{max}} = 0.6-0.8^\circ\text{C} \).
 • Improves the potential of natural ventilation.

The operating hours of air conditioning device are mitigated / or even the installation can be avoided.
Discussion and further plans

• further measurements and model-based assessments from different study areas (species, climatic circumstances and modelling contexts)
• go on with further transmissivity measurements of different species
• Verifying the model-based results with indoor measurements.

• planting guide: model-based impact assessments of trees of different species, direction and distance to building
• urban-scale (spatial) assessments
Thank you for your attention!